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A development of the method of boundary integral equations for solving unsteady boundary-value problems of uncoupled 
thermoelasticity is presented. In the case of plane deformation, an algorithm for the numerical implementation of the method 
is presented and the results of calculations of a thermally stressed plane with apertures of circular (the test problem) and arched 
forms are given for the case when there is a specified unsteady heat flux on the boundary. © 2000 Elsevier Science Ltd. All rights 
reserved. 

Unlike the case of dynamic problems in the theory of elasticity, there have only been a few studies of 
the dynamics of thermoelastic media with stress concentrators in the form of cavities and inclusions of 
various shapes. The class of particular solutions of the equations of thermoelasticity has been thoroughly 
investigated [1], mainly in the case of domains with a canonical form of the boundaries, where the 
methods of separation of variables and integral transforms are successfully used. The use of these 
methods in domains with a complex geometry is extremely restricted and frequently impossible. One 
of the potentially useful methods for solving such problems is the method of boundary integral equations, 
which was developed in [2-5] to solve static and quasistatic problems in thermoelasticity. There are 
only a few investigations of dynamic problems which take account of the inertial terms in the equations 
of motion which are based on this method and these are mainly of a theoretical nature. The present 
paper is concerned with the development of these problems. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

We consider a thermoelastic medium S- which is bounded by a closed smooth Lyapunov surface S 
and n is the unit vector of the outward normal to S. The model of uncoupled thermoelasticity [1] 

(c2t - c ] )  u,,,j +c]Auj + Fj = u j,, (1.1) 

A0(x ,  t) - k-10(x, t) + g(x, t) = 0 (1.2) 

aij (x, t) = Ix(ul,j + u j. ) + (Z, uk, k _ ~0)~q 

Fj =Gj-'yO,j ,  i , j ,k=l ,2;  7=o~(3~,+21x)/p 

(1.3) 

is used to describe the motion of this medium. 
Here, ~, and Ix are Lam6 constants, p is the density, ct, c2 are the velocities of propagation of the 

longitudinal and transverse waves, o~ is the coefficient of linear thermal expansion, k = ×/(pc) is the 
thermal conductivity, c is the specific heat capacity, 0 is the relative change in the absolute temperature, 
~e' ui are the components of the stress and strain tensors, which are connected by the Duhamel- 

umann relations (1.4), Gj are the components of the bulk force, and $ij is the Kronecker delta. 
2 Henceforth, derivatives with respect to the corresponding coordinates: ui~. = ~ u~axk~cj, Oj = O0/Oxy, 

are denoted by the symbol after the comma in the subscript, and time derivatives are denoted by a dot. 
Summation from 1 to 2 is carried out everywhere over repeated indices. At the initial instant of time 
t = 0  

u(x,0)=0, x e S - + S ;  ti(x,0)=0, x e S  (1.4) 
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0(x,0) = 0, x ~ S - + S  (1.5) 

The acting loads and the heat flux on the boundary of the domain are known 

~ij(x,t)nj(x)= pi(x,t), Odn j =q(x,t), x~S (1.6) 

By virtue of the hyperbolic nature of system (1.1), the following conditions for the discontinuities in 
the derivatives in the wave fronts [6] 

[bl i 4" "OVjUi, j ]  F -.~ 0 ,  [l~ijV j + p'OtJi] F = 0 (1.7) 

must be satisfied for the class of solutions which are continuous with respect to the derivatives. Here 
= cl, c2 is the rate of propagation of the discontinuity surface and v are the direction cosines of the 

normal to it. 
It is required to find oii, ui, 0 in the medium for the specified boundary and initial conditions (1.4)-(1.6) 

and conditions (1.7). 

2. F O R M U L A T I O N  OF THE P R O B L E M  IN 
LAPLACE T R A N S F O R M  SPACE 

A Laplace transform with respect to t 
+oo 

~.(x,p)= lui(x,t)e-ptdt, Rep ~>P0>0 
0 

is used to solve the problem. The problem can then be subdivided into two boundary-value problems. 
We first solve the following problem. 

The boundary-value problem for determining the temperature field. Equation (1.2) is transformed to 
the form 

A~(x, p ) -  k-~p~(x, p) + ~(x, p) = 0 (2.1) 

Initial condition (1.5) is transformed into the asymptotic condition 

lira p 0 ( x ,  p)  = 0, x ~ S -  + S 
p.--.>** 

The boundary condition has an analogous form 

~n  = ~(x, p), x e S (2.2) 

After the temperature field has been determined, we solve the following problem. 

The boundary-value problem for determining the thermoelastic displacements ue. The equations of motion 

(c?-c~)~i,ii + c2AtTj- ~lO j + Gj = pZ~y, i,j = 1,2 (2.3) 

contain the temperature gradient, which is now known. 
Initial conditions (1.4) are transformed into the asymptotic conditions 

lira pfi'(x, p) = 0, x ~ S- + S; lim p2~-(x, p) = 0, x e S- 
p - - ~  p--~*a 

Boundary conditions (1.6) have the form 

~o(x,p)nj(x)=p/(x,p), x e S  

The method of boundary integral equations (BIEs) is used to solve both problems. 
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3. BOUNDARY INTEGRAL EQUATIONS FOR A T I M E - D E P E N D E N T  
PROBLEM OF U N C O U P L E D  T H E R M O E L A S T I C I T Y  

The methods of the theory of generalized functions is used to determine the temperature field using 
the technique which has previously been described in [6]. In the space of generalized functions, the 
equation of the temperature field (2.1) has the form 

A0(x, p) - pk-lO(x, p) = -nj  (x)ajO(x, p)8 s (x) - 

---~j (nj (x)O(x, p)5 s (x)) - g(x, p ) n  s (x) (3.1) 

1, xES- 

O(x,p)='O(x,p)Hs(x), n s ( x ) =  ~ ,  xES 

[ 0 ,  XE S + 

where f(X)Ss(X ) is a singular generalized function--a single layer in the set S, with densityf(x) [7] and 
/-/s(x) is the characteristic function of the set S-. 

By convolution of the right-hand side of (3.1) with Green's function 0* (x, p), we obtain an analogue 
of Green's formula in the space of generalized functions 

~(x,p) =§*(x,p),~(x,p)Ss(X)+aj~*(x,p), nj(x)~(x,p)8 s(x)+ 

+~*(x, p),  ~(x, p)Hs(x) (3.2) 

where 

~'(x, p) = (2n)-' Ko(, x ,  ~ / k) (3.3) 

We write the integral representation of the transform of the temperature field (3.2), taking account 
of (3.3), in the form 

2~O(x, p)H s (x) = I Ko(rqP/k)~(y,  p)du (y) +J K o ( r~P-/k)~(y, p)ds(y) - 
S -  S 

- p~-f-k J Kj (r~/p I k )r jnj (y)O(y, p)ds, r =11 x - y II (3.4) 
S 

where Kn(pr/c2) are McDonald functions. For x ~ S, the third integral on the right-hand side is taken 
in the sense of the principal value. 

Relation (3.4) for x ~ S is a_ singular BIE which enables us to find the transform of the temperature 
0(x, p) in S if the heat flux q (x, p) is known. Numerical methods are used to_ solve these equations 
in the case of an arbitrary contour S. After solving the BIE using Eq. (3.4), 0(x, p) is recovered for 
x ~ S - .  

4. D E T E R M I N A T I O N  OF THE STRAIN AND STRESS FIELDS 

If the temperature field 0(x,p) is known, one can solve the second boundary-value problem, since 
t_he temperature field now appears in (2.3) in the form of a known "mass force". We next assume that 
Gj = 0. The required solution can be represented in the form 

-o  +~j. (4.1) ~'(x,p) = ~O(x,p)+~r(x,p),  ~(/(x,p) = ffij 

where ~°(x,p) is the solution of the homogeneous equation (we shall call it the "elastic solution" which 
corresponds to (1.3), F F = 0) and ~'(x,p) is a particular solution of the inhomogeneous equation (2.3) 
(which is conventionally called the "temperature solution"). The potential method, which we previously 
developed to solve problems in elastodynamics [6] is used here to construct the BIE for determining 
the displacements t~ °(x, p). 

The function ~°(x, p) is sought in the form of the potential of the single layer 
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~i° (x, p) = J U/j(x - y, p)~j (y, p)dS(y) 
S 

where U/y(x,p) is Green's tensor of the equations of elastodynamics [6, 8] and the density q)j (y,p) is the 
solution of a BIE of the form 

Here, 

O. 5~(x ,  p) = J r/k (x, y, P)~k (y, p)dS(y) = f/(x, p), x ~ S 
S 

] / (x ,p)=~i(x,p)- '6~j(x,p)nj(x) ,  xES (4.2) 

The particular solution of Eqs (2.3) has the form of a convolution of the "mass force" generated by 
the temperature field with Green's tensor Uij(x, p) which (when Gj = 0) reduces to the form 

~/r (x, p) = ~(2gc3) -l IO(y, p)Kj (prl q )ridu (y) (4.3) 
s- 

The thermal stresses generated by these displacements are given by the formula 

(x, e )  = (x, e )  • G (x, p) - p ) H s  - 

-V~] (x, p) • Ok0(x, p)H s (x) + TS//] (x, p) • O(x, p)nk~) s (x) (4.4) 

- '  + + ~d(x, p) = ~'Um, m~O 

Here S~(x, p ) i s  the fundamental stress tensor generated by Uij(x, p). 
We write relation (4.4) in the integral form 

t ~k.x . D0(y, p) dv" " ~/~(x,p)---TO(x,P)Hs(X)(Yij --T J_ ij t , Y , P ; ~  (Y) 

+TJ S,: (x, y,p)0(y, p)n k (y)ds(y) (4.5) 
S 

For x ~ S-, all the integrals exist but, when x ~ S, the last integral in (4.5) has a strong singularity since 

K t (r p.~)--k) ~ (r p.~]~) -l when r ---> 0 

Formula (4.5) contains temperature derivatives and is inconvenient for numerical calculations. It is 
transformed to a form which does not contain 0, k. 

We now consider relation (4.5) for the case when x ~ S-. Using Gauss' theorem and regularizing the 
volume integrals which arise here, we obtain a formula for calculating the thermal stresses when 
x ~ S -  

Relation (4.6) 
calculations. 

p)~ ~.~ (x, y, p)n k (y)ds(y)]- '~(x, p)H s (x)$/j (4.6) +O(x, 
i 

Oy--T-2~c~ (2c2 - 1)Ko + 

does not contain temperature derivatives and is more convenient for numerical 
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Formulae (4.6) cannot be used when x e S since the second integral on the right does not exist. Taking 
the limit in (4.6) with respect to x ---) x* (x ~ S-, x* e S) and using a previously obtained formula 
[6, p. 144] we obtain 6~-(x, p) on the boundary. 

As a result, we havet  

~ (x, p) = T[ I [0(Y, P) - §(x, p ) ]~ j  (x,y, p)dv (y) + (4.7) 
Ls- 

+V.p.J Si~ (x, y, p)0(x, p)n k (y)ds(y) + c20(x, p)nin j - 0(x, p ) (~  + c2~ij)], 
s 

for the thermal stresses when x e S. 
Formula (4.7) enables us to find the right-hand side of BIE (4.2). After solving these equations, we 

determine the strains and stresses in the medium using relations (4.1). 

5. AN A L G O R I T H M  FOR T H E  N U M E R I C A L  S O L U T I O N  OF T H E  
B O U N D A R Y - V A L U E  P R O B L E M  OF T H E R M O E L A S T I C I T Y  

The proposed algorithm consists of severe steps: interpolation of the boundary contour using cubic 
splines, construction of the discrete analogues of the BIEs by a piecewise-constant approximation of 
the temperature by means of a linear approximation tp(x,p) in each boundary element, the use of Gauss' 
quadrature formulae to evaluate the surface and volume integrals, the solution of the discrete analogues 
of the BIEs for the temperature  for a specified sequence of values of the Laplace transform parameter  
{Pc}, calculation of the transform of the " temperature"  strains and stresses, solution of the discrete 
analogue of the BIE for the density tp(x,p) for the specified sequence {Pk} and calculation of the originals 
of the resulting strains and stresses by numerical inversion of the Laplace transform. 

Discrete analogues of the BIEs were obtained in the form of a system of linear algebraic equations, 
the order of which is determined by the number of boundary elements N (see the paper cited in the 
footnote).  

Evaluation of the volume integrals (4.3) and (4.7) presents a certain amount of difficulty. The 
calculations were carried out for a plane with an aperture of arbitrary form (external problems). In 
order to do this, the domain S- was subdivided into zones which were commensurate,  close to the 
boundary, with the size of the boundary elements. Cubic functions in the form of a plane element were 
used when integrating inside the curvilinear elements. 

Two inversion schemes were used for the numerical inversion of the transforms of the solutions: the 
Papoulis scheme [9], for which a knowledge of the transform of the solution on the real axis is required, 
and a discrete Laplace transform [10] for complex values ofp.  

An analytical solution of the problem of the thermally stressed state of a plane weakened by a circular aperture 
(see the paper cited in the footnote), with the boundary conditions when R = Ilxll -- 1 

q(x,t) = H(t), olj(x,t)nj(x ) = O, i,j = 1,2 (5.1) 

was used to test the algorithm. In (5.1), (H(t) is the Heaviside function). The following values of the dimensionless 
parameters were used in the calculations: v = 0.25, p = 1, cl = 1, 7 = 1, k = 1. 

Calculations of the temperature transform 0(x, p) showed that the relative error e decreases as the number of 
boundary elements N is increased. For instance, atp = 0.1, R = 1 an increase in N from 12 to 60 leads to a decrease 
in e from 0.015 to 0.003, atp = 0.1, R ~> 1.5 it leads to a decrease in e from 0.0014 to 0.0002, atp = 2, R = 1 to a 
decrease in e from 0.057 to 0.011, and atp = 2, R 1> 1.5 to a decrease in e from 0.017 to 0.003. The same is observed 
in the case of the value of oo0 calculated at R = 1 (on the boundary of the contour). 

The values of the temperature and the shear stresses, calculated using the Papoulis scheme and using the discrete 
Laplace transform were practically identical: the relative error was less than 0.01. 

In order to illustrate the possibilities of the algorithm developed above, problems were solved on 
the determination of the thermally stressed state of a plane, weakened by an arch-shaped aperture 
(Fig. 1) acted upon by a constant heat flux of the form (5.1) (see the paper cited in the footnote)  and 
a pulsed heat flux 

tDADAYEVA, A. N., The method of boundary integral equations in a time-dependent boundary-value problem of 
thermoelasticity. Candidate dissertation, Almaty 1995. 



808 L . A .  Alekseyeva  et al. 

o.,f 
0 

-/ 
~2 

# 2 4 6 t 

Fig. 1. 

q(x, t) = tH(t)H(1 - t) - (t - 2 ) H ( t -  1)H(2 - t) (5.2) 

Here ,  the t r ans form was inver ted using the Papoulis  scheme.  
T h e  results  o f  the calculat ions at the character is t ic  points  of  the arch in the case of  (5.2) are shown 

in Fig. 1. Curves  t l - t 4  co r r e spond  to the  values  of  the t e m p e r a t u r e  0(x, t) at the four  points  o f  the arch: 
(0, 0), (0, 9, 0), (1, 1), (0, 2) (curves t2 and t3 pass be tween  t l  and t4 and are not  shown in Fig. 1) and 
n l - n 4  are  the values  of  the no rma l  stresses in the tangent ia l  p lanes  of  these  points.  T h e  t e m p e r a t u r e  
and stresses at  the points  o f  the arch where  the curvature  is cont inuous  are of  a pulsed nature ,  similar 
to (5.2). A n  oscil latory process  occurs  at  points  2 and 3, where  the curva ture  has a discontinuity.  No te  
that  instability in the numer ica l  recovery  of  the originals occurs  at long times, which does  not  enable  
the asymptot ic  behav iou r  of  the solutions with t ime to be  followed. However ,  at shor t  t imes,  which are 
character is t ic  o f  t ransients ,  the a lgor i thm for  a calculat ion based on the B I E  me thod  is quite stable. 
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